使用APP可以使用朗读功能!选择内容朗读。下载APP

白垩纪晚期似乎是无冰雪时期

时间:2020-12-19 栏目:英语作文
For years, scientists have thought that a continental1 ice sheet formed during the Late Cretaceous Period more than 90 million years ago when the climate was much warmer than it is today. Now, a University of Missouri researcher has found evidence suggesting that no ice sheet formed at this time. This finding could help environmentalists and scientists predict what Earth's climate will be as carbon dioxide levels continue to rise.
 
"Currently, carbon dioxide levels are just above 400 parts per million (ppm), up approximately 120 ppm in the last 150 years and rising about 2 ppm each year," said Ken2 MacLeod, a professor of geological sciences at MU. "In our study, we found that during the Late Cretaceous Period, when carbon dioxide levels were around 1,000 ppm, there were no continental ice sheets on earth. So, if carbon dioxide levels continue to rise, the Earth will be ice-free once the climate comes into balance with the higher levels."
 
In his study, MacLeod analyzed3 the fossilized shells of 90 million-year-old planktic4 and benthic foraminifera, single-celled organisms about the size of a grain of salt. Measuring the ratios of different isotopes5 of oxygen and carbon in the fossils gives scientists information about past temperatures and other environmental conditions. The fossils, which were found in Tanzania, showed no evidence of cooling or changes in local water chemistry that would have been expected if a glacial event had occurred during that time period.
 
"We know that the carbon dioxide (CO2) levels are rising currently and are at the highest they have been in millions of years. We have records of how conditions have changed as CO2 levels have risen from 280 to 400 ppm, but I believe it also is important to know what could happen when those levels reach 600 to 1000 ppm," MacLeod said. "At the rate that carbon dioxide levels are rising, we will reach 600 ppm around the end of this century. At that level of CO2, will ice sheets on Greenland and Antarctica be stable? If not, how will their melting affect the planet?"
 
Previously6, many scientists have thought that doubling CO2 levels would cause earth's temperature to increase as much as 3 degrees Celsius7, or approximately 6 degrees Fahrenheit8. However, the temperatures MacLeod believes existed in Tanzania 90 million years ago are more consistent with predictions that a doubling of CO2 levels would cause Earth's temperature could rise an average of 6 degrees Celsius, or approximately 11 degrees Fahrenheit.
 
"While studying the past can help us predict the future, other challenges with modern warming still exist," MacLeod said. "The Late Cretaceous climate was very warm, but the Earth adjusted as changes occurred over millions of years. We're seeing the same size changes, but they are happening over a couple of hundred years, maybe 10,000 times faster. How that affects the equation is a big and difficult question."
 
MacLeod's study was published in the October issue of the journal Geology.


点击收听单词发音收听单词发音  

1 continental Zazyk   
小编推荐:
《科学美国人》2020十大新兴技术 下
气候变化对芬兰北方的蛾类影响不大
全球气候变化之应对路线图

相关推荐

为你推荐

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

供学生免费阅读学习